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Abstract  

We present a probabilistic generative model 
used to classify unknown Proper Noun 
Phrases into semantic categories.  The core 
of the classifier is an n-gram character 
model, which is enhanced with an n-gram 
word-length model and a common word 
model.  While most work has depended 
largely on context or domain-specific rules 
for semantic disambiguation of unknown 
names, we demonstrate that there is 
surprisingly reliable statistical information 
available in the composition of the names 
themselves.  Using the context-independent 
probabilities assigned by our domain 
independent classifier is sufficient to 
achieve greater than 90% classification 
accuracy on typical tasks. 

Keywords: named-entity classification, unknown 
words, probabilistic modeling, n-grams 

Introduction 

Unknown words and phrases are a continual 
source of trouble for statistical NLP techniques, 
because no statistics can be generated for an 
item that you have never seen before (Mikheev, 
1997).  This problem is particularly acute in 
domains where there are large numbers of 
specific names, or where new names are 
constantly being created.  For this study, we 
looked at five such categories of Proper Noun 
Phrases (PNPs): drug names, company names, 
movie titles, place names, and people’s names.   

There has been a great deal of interest in the 
named entity extraction task of extracting PNPs 
from text and classifying them.  For example, 
the MUC tests require identifying PNPs and 

classifying them as company names, place 
names, and people names (Mikheev et al, 1998, 
Collins et al, 1999).  Similarly, several studies 
have tried to identify novel terms in medical 
abstracts (e.g. Campbell, et al, 1999, Boden-
reider et al, 2000).  Here we focus solely on the 
latter task of classifying PNPs. 

Traditional approaches to PNP classification 
rely primarily on large, manually constructed 
lists of known names or “gazetteers” (Wachol-
der et al, 1997, Charoenpornsawat et al, 1998, 
Mikheev et al, 1998, Bodenreider et al, 2000), 
hand-built, domain-specific rules based on pat-
terns in the syntactic context (Appelt et al, 1995, 
Mikheev et al, 1998, Bodenreider et al, 2000), 
and/or gross word-level features such as capitali-
zation, punctuation, or presence of numbers and 
other “special characters” (Bikel et al 1997, 
Wacholder et al, 1997, Baluja et al, 1999, Bikel 
et al, 1999, Bodenreider et al, 2000).  Many of 
these systems use some form of machine 
learning in conjunction with these features. 
These methods achieve relatively high levels of 
performance, but suffer from the problem that 
building lists of words or heuristic rules is slow, 
expensive, and domain-specific.  These short-
comings have been widely acknowledged (e.g., 
Wacholder et al, 1997, Mihkeev et al, 1999), yet 
few alternative strategies for unknown PNP 
classification have been proposed. 

In this paper we show that the internal 
composition of PNPs provides surprisingly 
strong evidence for classification, independent 
of any context. People often find it easy to 
classify PNPs that they have never seen before: 
a PNP like Novo-Doxylin just looks like a drug 
name.  In an application of named entity classifi-
cation, the context of use of a PNP often 
provides powerful clues to classification, and 
these are exploited by most systems. Our central 



 

contention is that current systems insufficiently 
exploit information in the word shape of a PNP 
(i.e., essentially phonaesthetic considerations), 
which can also be effectively used for classifi-
cation. By word shape, we mean features like 
common letter sequences and word lengths, 
along with the presence of key words within the 
PNP (Inc., Jr., etc.).  

In a complete system, our classifier would 
serve as an informed prior probability over PNP 
classes, which could be combined with 
additional clues from context, for instance using 
Bayesian evidence combination.  However, we 
focus here solely on the problem of computing 
context-independent priors, which has so far 
been under explored. 

The value of word-level features has been 
exploited in part-of-speech tagging, where suffix 
morphology is used to decide the class of 
unknown words (e.g., Mikheev, 1997). This 
technique would not work for semantic class-
ification, but we propose a method of building a 
probabilistic model of the generation of PNPs, 
which can exploit latent regularities in word 
sequencing and shape. The method is similar to 
the use of character n-grams for language identi-
fication (Dunning 1994, Cavnar and Trenkle 
1994), and essentially reuses known techniques, 
though tuned to the features of the case at hand.   

The contribution of this paper is thus not so 
much in the novelty of the methods used, but in 
showing how much value can be gotten from an 
information source that has been ignored.  
Moreover, by automatically learning the 
statistics of a given category of PNPs, rather 
than manually constructing domain-specific 
heuristics, we also realize the ability to quickly 
reach high levels of classification accuracy in 
novel domains, a challenge that few existing 
methods have met.  

1 Formalization of Problem 

1.1 Task 

The performance task is to take a string 
representing a Proper Noun Phrase (e.g. Aureo-
mycin or Keyspan Corp) and classify it into one 
of a predefined set of categories (e.g. drug name 
or company name).  A Proper Noun Phrase is a 
sequence of one or more words that represents 
the name of a person, place, or thing.  As men-

tioned above, our goal is to assess the ability to 
classify an already segmented PNP independent 
of context. Segmentation of PNPs from text is a 
separate and prior problem, which has been well 
studied (Abney, 1991, Ramshaw et al, 1995, 
Bikel et al, 1997). 

1.2 Training 

We use a standard supervised learning paradigm.   
A training example consists of a PNP labeled 
with its semantic category.  A portion of the 
training examples (20% in the reported results) 
are held-out for learning various parameters 
described in the next section, and the remainder 
are counted to derive various statistics.  After 
cross-validation parameters have been set, the 
held-out data is also trained on before testing. 

1.3 Testing 

After training is completed, the classifier is 
presented with another list of PNPs, none of 
which appeared in the training data.  Some PNPs 
are inherently ambiguous and thus could be 
judged as correctly belonging to multiple classes 
(e.g., Washington is both a place and a name).  
However, we follow the stringent evaluation 
standard of only accepting the category from 
which the example was originally taken, 
regardless of its ambiguity. 

1.4 Evaluation 

Each result presented is the average of 10 
separate train/test runs.  In each case, a 
randomly selected 90% of the supervised data is 
used for training, and the remaining 10% is used 
for testing.  The evaluation metric we use is raw 
classification accuracy, defined as the number of 
test examples for which the correct category was 
provided by the classifier, divided by the total 
number of test examples presented.   

2 Model Used for Classification 

Classification of PNPs is performed using a 
probabilistic generative model for each category.  
Classification is determined as follows: 
 
Predicted-Category(pnp) = argmaxc P(c|pnp)  

           = argmaxc P(c)α×P(pnp|c) 
 
P(c) is estimated empirically from the training 
data, and α is a prior-boost set with a line search 



 

on held-out data.1  P(pnp|c) is a model of each 
category of PNPs, which is based principally on 
two types of  features: the number and length of 
words used, and the composition of each word. 

Formally, P(pnp|c) is a generative model of 
the following form (each term is implicitly 
conditioned on the category): 
 
P(pnp|c) = Pn-gram(word-lengths(pnp)) × 

Πword i∈pnp P(wi|word-length(wi)) 
P(wi|len) = λlen× Pn-gram(wi|len)k/len + (1-λlen) × Pword(wi|len) 

 
The probability for each word is computed 

as the weighted average of the character n-gram 
estimate and the known-word estimate.  
Interpolation weights are learned for each 
distinct word length using a line search on held-
out data.2  P(w|len) is estimated empirically as 
the number of times word w was seen in the 
training data divided by the total number of 
words of length len characters seen. 

The function word-lengths(pnp) returns a 
list of integers, representing the number of 
characters in each word of the PNP.  The list is 
prepended with (n–1) boundary symbols for 
conditioning, and a final “0-lenth word” 
indicating the end of the PNP is also added so 
that the termination of PNPs becomes a 
statistically observable event.  For example, 
word-lengths(Curtis E. Lemay) = [6, 2, 5, 0].   

Two n-gram (Markov) models are used, one 
for word lengths, and one for characters.  We set 
n=4 for lengths, and n=6 for characters, and used 
deleted interpolation to estimate probabilities, 
using the following recursive function: 
 
P0-gram(symbol|history) = uniform-distribution 
Pn-gram(s|h) =  λC(h)Pempirical(s|h) + (1- λC(h))P(n-1)-gram(s|h) 
 
Thus, the 2-gram estimate is a mix of the 
empirical 2-gram distribution and the combined 
1/0-gram distribution, the 3-gram estimate is a 
mix of the empirical 3-gram and the combined 
2/1/0-gram, etc.  Interpolation parameters λC(h) 

are estimated via EM on held-out data, and are 
                                                      

                                                     
1 Setting a prior boost usually made little difference 
as it was often set to 1.0 during cross-validation. 
2If a novel word length is seen during testing, the 
interpolation parameter is automatically set to 1 for 
the character n-gram and 0 for the word model, since 
no words of that length have been seen before.   

learned separately based on the binned count of 
the conditioning context C(h).  We fixed the 
following bins in our experiments: {0, ≤5, ≤50, 
≤500, ≤5000, >5000}, though we found only 
minor deviation in our results by changing the 
specific bins used.   

The character n-gram estimate for the entire 
word is conditioned on word-length by dividing 
by the fraction of words in the training data with 
the given number of characters.3  The first word 
in the PNP is prepended with n-1 spaces (starter 
symbols, with the effect that the 2-gram and 
lower estimates treat the first word identically to 
a middle word) and the subsequent words are 
prepended with the preceding n-1 chars in the 
PNP (including the preceding space).  Each 
estimate is run up through the following space, 
and for the last word, a unique termination 
symbol is appended. 

Working with character level models means 
that longer words have more influence on 
classification than short words. To mitigate the 
effects of this bias, we normalize the n-gram 
estimate for length by taking the (k/length)’th 
root, where k is a global constant learned on 
held-out data through a line search.  The 
motivation for this process and its results are 
discussed in more detail in Section 5.3.2. 

3 Data Sets Used in Experiments 

We assembled five categories of PNPs for our 
experiments, each containing several thousand 
examples (see the appendix for a complete 
information on counts and sources).  The cate-
gories were pharmaceutical drugs (drug), com-
panies listed on the New York Stock Exchange 
(nyse), movies produced in 2000 (movie), cities 
and countries from around the world (place), 
and famous people’s names (person).  These 
collections were selected because they repre-
sented major sources of unknown PNPs of inte-
rest, and because of their diverse composition.   

These data sets were intentionally left in the 
rather “noisy” state in which they were found, to 
breed robustness, and to accurately measure per-
formance on “real world” examples.  There is in-

 
3 We condition the probability for each word on its 
length in order to keep it independent from the 
probability of seeing any word of that length, which 
is already computed by the length n-gram model. 



 

Figure 1. Classification accuracy on pairwise, 1-rest, and n-way tests 
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consistent use of capitalization, punctuation, and 
canonical formatting.  Many of the PNPs within 
a given category come from different languages 
(e.g., foreign films).  Some categories contain a 
number of frequently occurring words (e.g., Inc. 
and Corporation in nyse); others do not.4   

4 Experimental Results 

To assess the accuracy of our classifier, we ran 
three types of tests: pairwise tests of a single 
category against another single category, 1-rest 
tests of a single category against the union of the 
other categories, and n-way tests, where all 
categories are against each other.  The results of 
these tests are presented in Figure 1, sorted by 
classification accuracy and shown with standard 
deviations (computed from the ten separate 
train/test runs carried out for each result). 

It has been pointed out in the MUC 
competitions that PNPs often appear abbreviated 
in text, especially when mentioned earlier in full 
form.  In such cases, not all of the information 
contained in these data sets would be available.  
Previous work in Named Entity Extraction has 
addressed this problem by first trying to find full 
PNPs, then looking for their abbreviated 
versions (Mikheev et al, 1998).  However, we 
note that the current system can also recognize 
single-word unknown PNPs directly.  Over 30% 
of the total PNPs used in these data sets are 
single-word PNPs, and in some categories, the 
number is much higher (e.g. 84% of place names 
are single words).  Thus the ability of the 
classifier to handle both the presence and 
absence of common peripheral words in PNPs is 
being directly measured in our results. 

As expected, the n-way test was the most 
difficult.  The ranking of results also reflects the 
inherent difficulty of the different categories.  
Overall, company names were most easily 
recognized, followed by drug names, person 
names, and place names, with movie titles 
proving the most difficult.   

5 Discussion 

In this section, we account for the experimental 
results above, analyze the contribution of each 
piece of our model to overall performance, and 
examine the various parameters learned during 
cross validation.  We also present novel PNPs 
stochastically generated from our model, and 
conclude with demonstration of the ease with 
which this model can achieve proficiency with 
new categories. 

                                                      
4 One thing we did manually correct was names that 
appear with their words in a non-standard order used 
for indexing, such as movie titles like Ghost, The and 
names like Adams, John Quincy.  Each of these cases 
was restored to their “natural” word order. 



 

5.1 Analysis of Experimental Results 

Figure 2 shows the confusion matrix for the 5-
way classification task.  The area of each circle 
is proportional to the number of examples in that 
cell.  Movies, places, and people are most often 
confused for one another, and drugs are often 
misclassified as places (they both contain many 
odd-looking one-word names). As an indication 
of the difficulty of dealing with movie titles, if 
the n-way tests are rerun as a four-way test 
without movie titles, average classification 
accuracy jumps from 88.1% to 93.2%.  3-way 
classification between companies, places, and 
people (similar to the ENAMEX classification 
task in MUC) is performed with an average 
classification accuracy of 94.6%. 

Predicted Category 
 

drug nyse movie place person 

              
Figure 2. Confusion matrix for 5-way test. 
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The ease of identifying company names is 
largely attributable to the plethora of common 
words available, such as International, Capital, 
Inc., Corporation, and so on.  The difficulty of 
place names and movie titles is partly due to the 
fact that they contain words from many different 
languages (and thus the estimates learned blur 
together what should really be separate 
distributions).  Movie titles are also the most 
inherently ambiguous, since they are often 
named after people (e.g. John Henry) or places 
(e.g. Nuremberg), and often contain words 
normally associated with another category (e.g. 
Prozac Nation and Love, Inc.).  Mikheev et al 
(1998) report instances of similar ambiguity as a 
source of error in their work.   
62.35%
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89.66%
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89.59%

92.09%

91.94%
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Figure 3. Classification accuracy for individual 
model components and combinations (4-way test).
A similar source of errors stems from words 
(and common intra-word letter sequences) that 
appear in one category and drive classification in 
other categories when there is insufficient 
information to the contrary.  For example, in one 
run Delaware is erroneously classified as a 
company, because it was never seen as a place 
name, but it was seen in several company names 
(such as GTE Delaware LP).  Cases like these 
appear to be an inherent limitation of this 
classifier.  However we are being unusually 
restrictive by forcing our test set to be 
completely disjoint with our training set.  In a 
real application, common place names like 
Delaware would have been trained on and 
would be readily recognizable as place names.  

5.2 Contribution of Model Features 

To assess the relative contribution of the three 
major components of our model (length n-gram, 
character n-gram, common words), we present 
accuracy results using each model component in 
isolation and each possible pair of components 
(Figure 3).5  We use the 4-way drug-nyse-place-
person test as a representative indicator of 
performance. 

Each feature gives a classification accuracy 
significantly above a most-frequent-class 
baseline (34%), with the character n-gram being 
by far the most powerful single feature.   

Combining features reveals that the charac-
ter and length n-grams provide complementary 
information, but adding the word model to the 
character n-gram does not improve performance.  
The common word model by itself is quite 
effective, but it is largely subsumed by our high 
order character n-gram model, because common 

                                                      
5 Note that the full model in Figure 3 is identical to 
the 4-way test in Figure 1.  The slight difference in 
performance is merely due to data set differences. 
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Figure 4. Classification accuracy vs. word length 
normalization constant (4-way test).  

short words are memorized as single n-gram 
entries, and common long words contain many 
common n-grams.  The word model could be 
eliminated without hurting performance. 

The word model could also be regarded as a 
reasonable baseline, since it is basically 
equivalent to the performance that could be 
expected from a (multinomial) Naïve Bayes 
word model, a model that is often used as a 
baseline in text classification tasks. As one 
further indicative baseline, we ran a publicly 
available variable n-gram language identifier on 
our data (Beeferman 1996). It achieves a per-
formance of 76.54%. This is not a fair compari-
son: Beeferman explicitly notes that his system 
is unlikely to be reliable on very short inputs of 
the sort present in our data, but this nevertheless 
again shows that our system is sufficiently well 
tuned to the task at hand to achieve performance 
well above obvious baseline levels.  

5.3 Impact of Other Model Parameters 

In addition to the three major model components 
described above, performance is affected by the 
length of the n-gram models used, the use of a 
word length normalization constant for the 
character n-gram, and the amount of available 
training data. 

5.3.1 Increasing N-Gram Length 
The only important model parameters not set on 
held-out data are the sizes of the length and 
character n-gram models.  In principle, the use 
of deleted interpolation with weights set on held-
out data means that very large n-gram models 
could be used, and once data sparseness was a 
larger factor than predictive accuracy, the 
higher-order n-gram factors would be down-
weighted.  However in practice training and 
testing is exponentially slow in the length of the 
n-gram, and the largest useful n-gram size, once 
empirically determined, is relatively stable. 

Table 1 shows classification accuracy of the 
character n-gram model alone for increasing 

values of n.  Accuracy increases and plateaus, at 
which point increasing n further has no effect.  
The same analysis holds for increasing n for the 
word-length n-gram, also shown in Table 1. 

5.3.2 Word Length Normalization 
As mentioned above, modeling words with a 

character n-gram model means treating 
characters as the unit of evidence, so that long 
words have more of an impact on classification 
than short words. But in many instances, it 
seems intuitively that words are a better unit of 
evidence (indeed, many telling common words 
like Inc. or Lake are very short).  To compensate 
for this effect we introduce a parameter to 
normalize the probability assigned to each word 
in a PNP by taking the (k/length)’th root, where 
length is the number of characters in the word, 
and k is a global constant set with a line search 
on held-out data.  

Figure 4 shows how varying the value of k 
affects performance on a typical run.  The 
optimal value of k varies by data set, but is 
usually around 2 to 3.  Probability judgments for 
words of length <k are magnified, while those 
for words of length >k are diminished.  The 
result is that compelling short words can 
effectively compete with less compelling longer 
words, thus shifting the unit of evidence from 
the character to the word.  

5.3.3 Training Data Size 

le

w

Obtaining a large number of examples of each 
category to use as training data was not difficult.  
Nevertheless, it is still worth examining 
classifier performance as a function of the 
amount of training data provided.   
n 1 2 3 4 5 6 7 
char 60.0 81.4 87.7 89.2 89.5 89.7 89.8
ngth 46.4 60.1 62.2 62.4 62.4 - - 
Table 1. Classification accuracy of char and 
ord-length n-gram models alone (4-way test). 



 

Figure 5 illustrates that while performance 
continues to improve as more training examples 
are provided, the classifier only requires a small 
subset of the training data to approach its full 
potential.  This means that when faced with 
novel categories, for which large collections of 
examples are not immediately available, 
acquiring proficiency should still be possible.   

Figure 5 also indicates that increasing the 
amount of training data would not significantly 
boost performance.  This hypothesis is supported 
by the observation that the majority of misclas-
sified examples are either inherently ambiguous, 
or contain words that appeared in another 
category, but that are not strongly indicative of 
any one category (as mentioned in Section 5.1). 

5.4 Generation of Novel PNPs 

Generative models are common for classifica-
tion, but can also be used to perform generation.  
We stochastically generated a collection of 
novel PNPs as an alternative means for getting a 
sense of the quality of the learned models.  A 
favorable selection of generated examples for 
each category is presented in Table 2. 

e

natural look of a large fraction of what is 
generated.  Sometimes entire training examples 
are generated, but usually the result is a mix of 
existing and novel words mixed together. 
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Figure 5. Classification accuracy vs. number of 
training examples (4-way test). 

5.5 Generalization to New Categories 

The fact that our classification technique is 
domain independent means that we can quickly 
attain high levels of performance on categories 
that have not previously been studied.  We 
illustrate the versatility of our approach here, by 
applying the classifier to a novel domain, with-
out making any changes to the classifier design. 

Inspired by the game “Cheese or Disease?”, 
featured on the MTV show Idiot Savants (see 
Holman, 1997), as our novel categories, we 
chose discriminating names of cheeses, and 
names of diseases.  The basic idea is that there 
are many odd-sounding cheese and disease 
names, some of which are quite difficult to tell 
apart.  This seemed like an ideal test for the PNP 
classifier.   

Finding existing lists of cheeses and diseases 
on the web proved trivial (see Appendix for 
details), and since the classifier is domain 
independent, we were able to start training 
immediately.  With 10 minutes of work, we had 
a classifier that achieved 93.5% classification 
accuracy.  While recognizing references to 
cheese may not be high on the Defense 
Department’s priority list, we feel that the ability 
to quickly reach high levels of proficiency in 
novel domains is a key benefit of our approach. 

6 Conclusion 

We have demonstrated that there are reliable 
regularities in the way names are constructed, 
which can be exploited for the purposes of 
named-entity classification.  Specifically, there 
are common sequences of letters in the words 
used, there are common words that appear 
alongside uncommon words, and there are 
regularities in the number and length of words 
used in the name.  These clues are sufficient for 
highly accurate classification, even in the ab-
sence of further context, and can be effectively 
used to complement existing context-based 
drug: Esidrine Plus Base with Moisturalent • 
Ambenylin • Carbosil DM 49 
nyse: Downe Financial Grp PR • Intermedia Inc. 
• Host Manage U.S.B. Householding Ltd.  
movie: Dragons: The Ever Harlane •  
Alien in Oz • El Tombre 
place: Archfield • Lee-Newcastleridge • Qatad 
person: Benedict W. Suthberg • Hugh Grob II • 
Elias Lindbert Atkinson  

Table 2.  Sample of generated PNPs. 
Not all generated examples are this coher-
nt, but we are encouraged by the surprisingly 

techniques for named-entity recognition by 
supplying an informed prior probability over 
categories. 



 

It should not come as too much of a surprise 
that categories like drugs, companies, and 
movies have similarly constructed names.  As 
Krauskfopf (2002) points out, coming up with 
new drug names is usually a multi-million dollar 
process in which special consultants are hired to 
find names that are different enough to be 
legally protected, but that have a “product of 
several powerful sounds” (Prozac is touted as 
one of the best invented drug names).  It may be 
the case that our classifier is learning the 
regularities in drug names that these consultants 
have buried subconsciously in their heads.  
Generation of novel PNPs with this type of 
model could prove to be a compelling 
application on its own. 
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Appendix: Size and Source of Each Data Set 
Category:  drug (6871 examples) 
Description:  Micromedex 2000 USP Drug Index 
Source:  my.webmd.com/drugs 



 

Category:  nyse (3403 examples) 
Description: Companies on the NY Stock Exchange 
Source:  www.nyse.com/listed 
Category:  movie (8619 examples) 
Description: Internet Movie Database (IMDB) listing 

of 2000 movies and videos 
Source:  us.imdb.com/Sections/Years/2000 
Category:  place (4701 examples) 
Description: Collection of country, state/province, 

and city names from around the world 
Source: dir.yahoo.com/Regional/Countries  
Category:  person (5282 examples) 
Description:  List of people with online biographies 
Source: www.biography-center.com 
Category:  cheese (599 examples) 
Description: Global database of cheese information 
Source:  www.cheese.com 
Category:  disease (1362 examples) 
Description: MeSH List of Diseases and Disorders 
Source: www.mic.ki.se/Diseases/alphalist.html 
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