
Classifying Unknown Proper Noun Phrases Without Context

Joseph SMARR
Symbolic Systems Program

Stanford University
Stanford, CA 94305-2181

jsmarr@stanford.edu

Christopher D. MANNING
Computer Science Department

Stanford University
Stanford, CA 94305-9040
manning@cs.stanford.edu

Abstract

We present a probabilistic generative model
used to classify unknown Proper Noun
Phrases into semantic categories. The core
of the classifier is an n-gram character
model, which is enhanced with an n-gram
word-length model and a common word
model. While most work has depended
largely on context or domain-specific rules
for semantic disambiguation of unknown
names, we demonstrate that there is
surprisingly reliable statistical information
available in the composition of the names
themselves. Using the context-independent
probabilities assigned by our domain
independent classifier is sufficient to
achieve greater than 90% classification
accuracy on typical tasks.

Keywords: named-entity classification, unknown
words, probabilistic modeling, n-grams

Introduction

Unknown words and phrases are a continual
source of trouble for statistical NLP techniques,
because no statistics can be generated for an
item that you have never seen before (Mikheev,
1997). This problem is particularly acute in
domains where there are large numbers of
specific names, or where new names are
constantly being created. For this study, we
looked at five such categories of Proper Noun
Phrases (PNPs): drug names, company names,
movie titles, place names, and people’s names.

There has been a great deal of interest in the
named entity extraction task of extracting PNPs
from text and classifying them. For example,
the MUC tests require identifying PNPs and

classifying them as company names, place
names, and people names (Mikheev et al, 1998,
Collins et al, 1999). Similarly, several studies
have tried to identify novel terms in medical
abstracts (e.g. Campbell, et al, 1999, Boden-
reider et al, 2000). Here we focus solely on the
latter task of classifying PNPs.

Traditional approaches to PNP classification
rely primarily on large, manually constructed
lists of known names or “gazetteers” (Wachol-
der et al, 1997, Charoenpornsawat et al, 1998,
Mikheev et al, 1998, Bodenreider et al, 2000),
hand-built, domain-specific rules based on pat-
terns in the syntactic context (Appelt et al, 1995,
Mikheev et al, 1998, Bodenreider et al, 2000),
and/or gross word-level features such as capitali-
zation, punctuation, or presence of numbers and
other “special characters” (Bikel et al 1997,
Wacholder et al, 1997, Baluja et al, 1999, Bikel
et al, 1999, Bodenreider et al, 2000). Many of
these systems use some form of machine
learning in conjunction with these features.
These methods achieve relatively high levels of
performance, but suffer from the problem that
building lists of words or heuristic rules is slow,
expensive, and domain-specific. These short-
comings have been widely acknowledged (e.g.,
Wacholder et al, 1997, Mihkeev et al, 1999), yet
few alternative strategies for unknown PNP
classification have been proposed.

In this paper we show that the internal
composition of PNPs provides surprisingly
strong evidence for classification, independent
of any context. People often find it easy to
classify PNPs that they have never seen before:
a PNP like Novo-Doxylin just looks like a drug
name. In an application of named entity classifi-
cation, the context of use of a PNP often
provides powerful clues to classification, and
these are exploited by most systems. Our central

contention is that current systems insufficiently
exploit information in the word shape of a PNP
(i.e., essentially phonaesthetic considerations),
which can also be effectively used for classifi-
cation. By word shape, we mean features like
common letter sequences and word lengths,
along with the presence of key words within the
PNP (Inc., Jr., etc.).

In a complete system, our classifier would
serve as an informed prior probability over PNP
classes, which could be combined with
additional clues from context, for instance using
Bayesian evidence combination. However, we
focus here solely on the problem of computing
context-independent priors, which has so far
been under explored.

The value of word-level features has been
exploited in part-of-speech tagging, where suffix
morphology is used to decide the class of
unknown words (e.g., Mikheev, 1997). This
technique would not work for semantic class-
ification, but we propose a method of building a
probabilistic model of the generation of PNPs,
which can exploit latent regularities in word
sequencing and shape. The method is similar to
the use of character n-grams for language identi-
fication (Dunning 1994, Cavnar and Trenkle
1994), and essentially reuses known techniques,
though tuned to the features of the case at hand.

The contribution of this paper is thus not so
much in the novelty of the methods used, but in
showing how much value can be gotten from an
information source that has been ignored.
Moreover, by automatically learning the
statistics of a given category of PNPs, rather
than manually constructing domain-specific
heuristics, we also realize the ability to quickly
reach high levels of classification accuracy in
novel domains, a challenge that few existing
methods have met.

1 Formalization of Problem

1.1 Task

The performance task is to take a string
representing a Proper Noun Phrase (e.g. Aureo-
mycin or Keyspan Corp) and classify it into one
of a predefined set of categories (e.g. drug name
or company name). A Proper Noun Phrase is a
sequence of one or more words that represents
the name of a person, place, or thing. As men-

tioned above, our goal is to assess the ability to
classify an already segmented PNP independent
of context. Segmentation of PNPs from text is a
separate and prior problem, which has been well
studied (Abney, 1991, Ramshaw et al, 1995,
Bikel et al, 1997).

1.2 Training

We use a standard supervised learning paradigm.
A training example consists of a PNP labeled
with its semantic category. A portion of the
training examples (20% in the reported results)
are held-out for learning various parameters
described in the next section, and the remainder
are counted to derive various statistics. After
cross-validation parameters have been set, the
held-out data is also trained on before testing.

1.3 Testing

After training is completed, the classifier is
presented with another list of PNPs, none of
which appeared in the training data. Some PNPs
are inherently ambiguous and thus could be
judged as correctly belonging to multiple classes
(e.g., Washington is both a place and a name).
However, we follow the stringent evaluation
standard of only accepting the category from
which the example was originally taken,
regardless of its ambiguity.

1.4 Evaluation

Each result presented is the average of 10
separate train/test runs. In each case, a
randomly selected 90% of the supervised data is
used for training, and the remaining 10% is used
for testing. The evaluation metric we use is raw
classification accuracy, defined as the number of
test examples for which the correct category was
provided by the classifier, divided by the total
number of test examples presented.

2 Model Used for Classification

Classification of PNPs is performed using a
probabilistic generative model for each category.
Classification is determined as follows:

Predicted-Category(pnp) = argmaxc P(c|pnp)

 = argmaxc P(c)α×P(pnp|c)

P(c) is estimated empirically from the training
data, and α is a prior-boost set with a line search

on held-out data.1 P(pnp|c) is a model of each
category of PNPs, which is based principally on
two types of features: the number and length of
words used, and the composition of each word.

Formally, P(pnp|c) is a generative model of
the following form (each term is implicitly
conditioned on the category):

P(pnp|c) = Pn-gram(word-lengths(pnp)) ×

Πword i∈pnp P(wi|word-length(wi))
P(wi|len) = λlen× Pn-gram(wi|len)k/len + (1-λlen) × Pword(wi|len)

The probability for each word is computed

as the weighted average of the character n-gram
estimate and the known-word estimate.
Interpolation weights are learned for each
distinct word length using a line search on held-
out data.2 P(w|len) is estimated empirically as
the number of times word w was seen in the
training data divided by the total number of
words of length len characters seen.

The function word-lengths(pnp) returns a
list of integers, representing the number of
characters in each word of the PNP. The list is
prepended with (n–1) boundary symbols for
conditioning, and a final “0-lenth word”
indicating the end of the PNP is also added so
that the termination of PNPs becomes a
statistically observable event. For example,
word-lengths(Curtis E. Lemay) = [6, 2, 5, 0].

Two n-gram (Markov) models are used, one
for word lengths, and one for characters. We set
n=4 for lengths, and n=6 for characters, and used
deleted interpolation to estimate probabilities,
using the following recursive function:

P0-gram(symbol|history) = uniform-distribution
Pn-gram(s|h) = λC(h)Pempirical(s|h) + (1- λC(h))P(n-1)-gram(s|h)

Thus, the 2-gram estimate is a mix of the
empirical 2-gram distribution and the combined
1/0-gram distribution, the 3-gram estimate is a
mix of the empirical 3-gram and the combined
2/1/0-gram, etc. Interpolation parameters λC(h)

are estimated via EM on held-out data, and are

1 Setting a prior boost usually made little difference
as it was often set to 1.0 during cross-validation.
2If a novel word length is seen during testing, the
interpolation parameter is automatically set to 1 for
the character n-gram and 0 for the word model, since
no words of that length have been seen before.

learned separately based on the binned count of
the conditioning context C(h). We fixed the
following bins in our experiments: {0, ≤5, ≤50,
≤500, ≤5000, >5000}, though we found only
minor deviation in our results by changing the
specific bins used.

The character n-gram estimate for the entire
word is conditioned on word-length by dividing
by the fraction of words in the training data with
the given number of characters.3 The first word
in the PNP is prepended with n-1 spaces (starter
symbols, with the effect that the 2-gram and
lower estimates treat the first word identically to
a middle word) and the subsequent words are
prepended with the preceding n-1 chars in the
PNP (including the preceding space). Each
estimate is run up through the following space,
and for the last word, a unique termination
symbol is appended.

Working with character level models means
that longer words have more influence on
classification than short words. To mitigate the
effects of this bias, we normalize the n-gram
estimate for length by taking the (k/length)’th
root, where k is a global constant learned on
held-out data through a line search. The
motivation for this process and its results are
discussed in more detail in Section 5.3.2.

3 Data Sets Used in Experiments

We assembled five categories of PNPs for our
experiments, each containing several thousand
examples (see the appendix for a complete
information on counts and sources). The cate-
gories were pharmaceutical drugs (drug), com-
panies listed on the New York Stock Exchange
(nyse), movies produced in 2000 (movie), cities
and countries from around the world (place),
and famous people’s names (person). These
collections were selected because they repre-
sented major sources of unknown PNPs of inte-
rest, and because of their diverse composition.

These data sets were intentionally left in the
rather “noisy” state in which they were found, to
breed robustness, and to accurately measure per-
formance on “real world” examples. There is in-

3 We condition the probability for each word on its
length in order to keep it independent from the
probability of seeing any word of that length, which
is already computed by the length n-gram model.

Figure 1. Classification accuracy on pairwise, 1-rest, and n-way tests

98.93%
98.70%

64%
41%

16%

98.
98.

98.
97.76%

96.81%
95.77%

95.47%
95.24%

94.34%

92.70%
91.86%

90.90%
89.94%

88.11%

93.25%

94.57%

82% 84% 86% 88% 90% 92% 94% 96% 98% 100%

drug-nyse
nyse-drug_movie_place_person

nyse-place
nyse-person
drug-person
nyse-movie

drug-nyse_movie_place_person
drug-movie

person-drug_nyse_movie_place
drug-place

nyse-place-person
place-person

drug-nyse-place-person
movie-person

place-drug_nyse_movie_person
movie-drug_nyse_place_person

movie-place
drug-nyse-movie-place-person

consistent use of capitalization, punctuation, and
canonical formatting. Many of the PNPs within
a given category come from different languages
(e.g., foreign films). Some categories contain a
number of frequently occurring words (e.g., Inc.
and Corporation in nyse); others do not.4

4 Experimental Results

To assess the accuracy of our classifier, we ran
three types of tests: pairwise tests of a single
category against another single category, 1-rest
tests of a single category against the union of the
other categories, and n-way tests, where all
categories are against each other. The results of
these tests are presented in Figure 1, sorted by
classification accuracy and shown with standard
deviations (computed from the ten separate
train/test runs carried out for each result).

It has been pointed out in the MUC
competitions that PNPs often appear abbreviated
in text, especially when mentioned earlier in full
form. In such cases, not all of the information
contained in these data sets would be available.
Previous work in Named Entity Extraction has
addressed this problem by first trying to find full
PNPs, then looking for their abbreviated
versions (Mikheev et al, 1998). However, we
note that the current system can also recognize
single-word unknown PNPs directly. Over 30%
of the total PNPs used in these data sets are
single-word PNPs, and in some categories, the
number is much higher (e.g. 84% of place names
are single words). Thus the ability of the
classifier to handle both the presence and
absence of common peripheral words in PNPs is
being directly measured in our results.

As expected, the n-way test was the most
difficult. The ranking of results also reflects the
inherent difficulty of the different categories.
Overall, company names were most easily
recognized, followed by drug names, person
names, and place names, with movie titles
proving the most difficult.

5 Discussion

In this section, we account for the experimental
results above, analyze the contribution of each
piece of our model to overall performance, and
examine the various parameters learned during
cross validation. We also present novel PNPs
stochastically generated from our model, and
conclude with demonstration of the ease with
which this model can achieve proficiency with
new categories.

4 One thing we did manually correct was names that
appear with their words in a non-standard order used
for indexing, such as movie titles like Ghost, The and
names like Adams, John Quincy. Each of these cases
was restored to their “natural” word order.

5.1 Analysis of Experimental Results

Figure 2 shows the confusion matrix for the 5-
way classification task. The area of each circle
is proportional to the number of examples in that
cell. Movies, places, and people are most often
confused for one another, and drugs are often
misclassified as places (they both contain many
odd-looking one-word names). As an indication
of the difficulty of dealing with movie titles, if
the n-way tests are rerun as a four-way test
without movie titles, average classification
accuracy jumps from 88.1% to 93.2%. 3-way
classification between companies, places, and
people (similar to the ENAMEX classification
task in MUC) is performed with an average
classification accuracy of 94.6%.

Predicted Category

drug nyse movie place person

Figure 2. Confusion matrix for 5-way test.

dr
ug

ny

se

m
ov

ie

pl
ac

e C
or

re
ct

 C
at

eg
or

y

pe
rs

on

The ease of identifying company names is
largely attributable to the plethora of common
words available, such as International, Capital,
Inc., Corporation, and so on. The difficulty of
place names and movie titles is partly due to the
fact that they contain words from many different
languages (and thus the estimates learned blur
together what should really be separate
distributions). Movie titles are also the most
inherently ambiguous, since they are often
named after people (e.g. John Henry) or places
(e.g. Nuremberg), and often contain words
normally associated with another category (e.g.
Prozac Nation and Love, Inc.). Mikheev et al
(1998) report instances of similar ambiguity as a
source of error in their work.
62.35%

72.18%

89.66%

74.45%

89.59%

92.09%

91.94%

0% 20% 40% 60% 80% 100%

length n-gram only

word model only

char n-gram only

length+word

char+word

char+length

full model

Figure 3. Classification accuracy for individual
model components and combinations (4-way test).
A similar source of errors stems from words
(and common intra-word letter sequences) that
appear in one category and drive classification in
other categories when there is insufficient
information to the contrary. For example, in one
run Delaware is erroneously classified as a
company, because it was never seen as a place
name, but it was seen in several company names
(such as GTE Delaware LP). Cases like these
appear to be an inherent limitation of this
classifier. However we are being unusually
restrictive by forcing our test set to be
completely disjoint with our training set. In a
real application, common place names like
Delaware would have been trained on and
would be readily recognizable as place names.

5.2 Contribution of Model Features

To assess the relative contribution of the three
major components of our model (length n-gram,
character n-gram, common words), we present
accuracy results using each model component in
isolation and each possible pair of components
(Figure 3).5 We use the 4-way drug-nyse-place-
person test as a representative indicator of
performance.

Each feature gives a classification accuracy
significantly above a most-frequent-class
baseline (34%), with the character n-gram being
by far the most powerful single feature.

Combining features reveals that the charac-
ter and length n-grams provide complementary
information, but adding the word model to the
character n-gram does not improve performance.
The common word model by itself is quite
effective, but it is largely subsumed by our high
order character n-gram model, because common

5 Note that the full model in Figure 3 is identical to
the 4-way test in Figure 1. The slight difference in
performance is merely due to data set differences.

91.0%

91.5%

92.0%

92.5%

93.0%

93.5%

94.0%

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4. Classification accuracy vs. word length
normalization constant (4-way test).

short words are memorized as single n-gram
entries, and common long words contain many
common n-grams. The word model could be
eliminated without hurting performance.

The word model could also be regarded as a
reasonable baseline, since it is basically
equivalent to the performance that could be
expected from a (multinomial) Naïve Bayes
word model, a model that is often used as a
baseline in text classification tasks. As one
further indicative baseline, we ran a publicly
available variable n-gram language identifier on
our data (Beeferman 1996). It achieves a per-
formance of 76.54%. This is not a fair compari-
son: Beeferman explicitly notes that his system
is unlikely to be reliable on very short inputs of
the sort present in our data, but this nevertheless
again shows that our system is sufficiently well
tuned to the task at hand to achieve performance
well above obvious baseline levels.

5.3 Impact of Other Model Parameters

In addition to the three major model components
described above, performance is affected by the
length of the n-gram models used, the use of a
word length normalization constant for the
character n-gram, and the amount of available
training data.

5.3.1 Increasing N-Gram Length
The only important model parameters not set on
held-out data are the sizes of the length and
character n-gram models. In principle, the use
of deleted interpolation with weights set on held-
out data means that very large n-gram models
could be used, and once data sparseness was a
larger factor than predictive accuracy, the
higher-order n-gram factors would be down-
weighted. However in practice training and
testing is exponentially slow in the length of the
n-gram, and the largest useful n-gram size, once
empirically determined, is relatively stable.

Table 1 shows classification accuracy of the
character n-gram model alone for increasing

values of n. Accuracy increases and plateaus, at
which point increasing n further has no effect.
The same analysis holds for increasing n for the
word-length n-gram, also shown in Table 1.

5.3.2 Word Length Normalization
As mentioned above, modeling words with a

character n-gram model means treating
characters as the unit of evidence, so that long
words have more of an impact on classification
than short words. But in many instances, it
seems intuitively that words are a better unit of
evidence (indeed, many telling common words
like Inc. or Lake are very short). To compensate
for this effect we introduce a parameter to
normalize the probability assigned to each word
in a PNP by taking the (k/length)’th root, where
length is the number of characters in the word,
and k is a global constant set with a line search
on held-out data.

Figure 4 shows how varying the value of k
affects performance on a typical run. The
optimal value of k varies by data set, but is
usually around 2 to 3. Probability judgments for
words of length <k are magnified, while those
for words of length >k are diminished. The
result is that compelling short words can
effectively compete with less compelling longer
words, thus shifting the unit of evidence from
the character to the word.

5.3.3 Training Data Size

le

w

Obtaining a large number of examples of each
category to use as training data was not difficult.
Nevertheless, it is still worth examining
classifier performance as a function of the
amount of training data provided.
n 1 2 3 4 5 6 7
char 60.0 81.4 87.7 89.2 89.5 89.7 89.8
ngth 46.4 60.1 62.2 62.4 62.4 - -
Table 1. Classification accuracy of char and
ord-length n-gram models alone (4-way test).

Figure 5 illustrates that while performance
continues to improve as more training examples
are provided, the classifier only requires a small
subset of the training data to approach its full
potential. This means that when faced with
novel categories, for which large collections of
examples are not immediately available,
acquiring proficiency should still be possible.

Figure 5 also indicates that increasing the
amount of training data would not significantly
boost performance. This hypothesis is supported
by the observation that the majority of misclas-
sified examples are either inherently ambiguous,
or contain words that appeared in another
category, but that are not strongly indicative of
any one category (as mentioned in Section 5.1).

5.4 Generation of Novel PNPs

Generative models are common for classifica-
tion, but can also be used to perform generation.
We stochastically generated a collection of
novel PNPs as an alternative means for getting a
sense of the quality of the learned models. A
favorable selection of generated examples for
each category is presented in Table 2.

e

natural look of a large fraction of what is
generated. Sometimes entire training examples
are generated, but usually the result is a mix of
existing and novel words mixed together.

0%

20%

40%

60%

80%

100%

0 5000 10000 15000 20000

Figure 5. Classification accuracy vs. number of
training examples (4-way test).

5.5 Generalization to New Categories

The fact that our classification technique is
domain independent means that we can quickly
attain high levels of performance on categories
that have not previously been studied. We
illustrate the versatility of our approach here, by
applying the classifier to a novel domain, with-
out making any changes to the classifier design.

Inspired by the game “Cheese or Disease?”,
featured on the MTV show Idiot Savants (see
Holman, 1997), as our novel categories, we
chose discriminating names of cheeses, and
names of diseases. The basic idea is that there
are many odd-sounding cheese and disease
names, some of which are quite difficult to tell
apart. This seemed like an ideal test for the PNP
classifier.

Finding existing lists of cheeses and diseases
on the web proved trivial (see Appendix for
details), and since the classifier is domain
independent, we were able to start training
immediately. With 10 minutes of work, we had
a classifier that achieved 93.5% classification
accuracy. While recognizing references to
cheese may not be high on the Defense
Department’s priority list, we feel that the ability
to quickly reach high levels of proficiency in
novel domains is a key benefit of our approach.

6 Conclusion

We have demonstrated that there are reliable
regularities in the way names are constructed,
which can be exploited for the purposes of
named-entity classification. Specifically, there
are common sequences of letters in the words
used, there are common words that appear
alongside uncommon words, and there are
regularities in the number and length of words
used in the name. These clues are sufficient for
highly accurate classification, even in the ab-
sence of further context, and can be effectively
used to complement existing context-based
drug: Esidrine Plus Base with Moisturalent •
Ambenylin • Carbosil DM 49
nyse: Downe Financial Grp PR • Intermedia Inc.
• Host Manage U.S.B. Householding Ltd.
movie: Dragons: The Ever Harlane •
Alien in Oz • El Tombre
place: Archfield • Lee-Newcastleridge • Qatad
person: Benedict W. Suthberg • Hugh Grob II •
Elias Lindbert Atkinson

Table 2. Sample of generated PNPs.
Not all generated examples are this coher-
nt, but we are encouraged by the surprisingly

techniques for named-entity recognition by
supplying an informed prior probability over
categories.

It should not come as too much of a surprise
that categories like drugs, companies, and
movies have similarly constructed names. As
Krauskfopf (2002) points out, coming up with
new drug names is usually a multi-million dollar
process in which special consultants are hired to
find names that are different enough to be
legally protected, but that have a “product of
several powerful sounds” (Prozac is touted as
one of the best invented drug names). It may be
the case that our classifier is learning the
regularities in drug names that these consultants
have buried subconsciously in their heads.
Generation of novel PNPs with this type of
model could prove to be a compelling
application on its own.

Acknowledgements

Special thanks to Stephen Patel, who worked on
an earlier version of this project.

References
Abney, S. (1991). Parsing By Chunks. In Berwick,

R., Abney, S., and Tenny, C., editors, Principle-
Based Parsing. Kluwer Academic Publishers.

Appelt, D., Hobbs, J., Bear, J., Israel, D., Kameyama,
M., Kehler, A., Martin, D., Myers, K., & Tyson,
M. (1995). SRI International FASTUS system:
MUC-6 test results and analysis. In Proc. of the 6th
Message Understanding Conference, pp. 237-248.

Baluja, S., Mittal, V., & Sukthankar, R. (1999).
Applying machine learning for high performance
named-entity extraction. Proceedings of the
Conference of the Pacific Association for
Computational Linguistics (pp. 365-378).

Beeferman, D. (1996). Stochastic language identifier.
Unpublished, Carnegie Mellon University.
http://www.dougb.com/ident.html

Bikel, D., R. Schwartz, and R. Weischedel. (1999).
An Algorithm that Learns What's in a Name.
Machine Learning 34: 211–231.

Bikel, D.M., Miller, S., Schwartz, R. & Weischedel,
R. (1997). Nymble: a High-Performance Learning
Name-finder. Proc. ANLP-97, pp. 194-201.

Bodenreider, O., & Zweigenbaum, P. (2000). Identi-
fying proper names in parallel medical terminolo-
gies. In Medical Infobahn for Europe – Proceed-
ings of MIE2000 and GMDS2000, pp. 443-447.

Campbell, D. A., & Johnson, S. B. (1999). A
Technique for Semantic Classification of Unknown
Words Using UMLS Resources. In AMIA ’99

Annual Symposium (American Medical Informatics
Association), session on Innovations in NLP.

Cavnar, W. B. and Trenkle, J. M. (1994). Ngram
Based Text Categorization. Proceedings of the
Third Annual Symposium on Document Analysis
and Information Retrieval, pp 161-169.

Charoenpornsawat, P., Kijsirikul, B., & Meknavin, S.
(1998). Feature-Based Proper Name Identification
in Thai. In NCSEC-98 (The National Computer
Science and Engineering Conference '98).

Collins M. and Singer Y. (1999). Unsupervised
models for named entity classification. In
Proceedings of the Joint SIGDAT Conference on
Empirical Methods in Natural Language
Processing and Very Large Corpora, pp. 189-196.

Dunning, T. (1994). Statistical identification of
language. Computing Research Laboratory
technical memo MCCS 94-273, New Mexico State
University, Las Cruces, New Mexico.

Holman, C. (1997). TV on the edge: Idiot Box.
Creative Loafing, Atlanta, February 08, 1997.
<http://www.creativeloafing.com/archives/atlanta/
newsstand/020897/b_edge.htm> (Visited: 3/20/02).

Krauskopf, L. (2002). Naming new drugs: Costly,
complex. The New Jersey Record, January 15,
2002. <http://home.cwru.edu/activism/READ/
Bergen011502.html> (Visited: 03/20/02).

Mikheev A., Moens M. and Grover C. (1999) Named
Entity recognition without gazetteers. In
Proceedings of the Annual Meeting of the
European Association for Computational
Linguistics (EACL'99), Bergen, Norway, pp. 1-8.

Mikheev, A. (1997). Automatic Rule Induction for
Unknown Word Guessing. Computational
Linguistics vol 23(3), ACL 1997. pp. 405-423.

Mikheev, A., Grover, C., & Moens, M. (1998)
Description of the LTG System Used for MUC-7.
MUC-7. Fairfax, Virginia.

Ramshaw, L. A. and Marcus, M. P. (1995). Text
chunking using transformation-based learning. In
Yarowsky, D. and Church, K., editors, Proceedings
of the Third Workshop on Very Large Corpora.

Wacholder, N., Ravin, Y., & Choi, M. (1997).
Disambiguation of Proper Names in Text. In:
Proceedings of the Fifth Conference on Applied
Natural Language Processing, pp. 202-208.

Appendix: Size and Source of Each Data Set
Category: drug (6871 examples)
Description: Micromedex 2000 USP Drug Index
Source: my.webmd.com/drugs

Category: nyse (3403 examples)
Description: Companies on the NY Stock Exchange
Source: www.nyse.com/listed
Category: movie (8619 examples)
Description: Internet Movie Database (IMDB) listing

of 2000 movies and videos
Source: us.imdb.com/Sections/Years/2000
Category: place (4701 examples)
Description: Collection of country, state/province,

and city names from around the world
Source: dir.yahoo.com/Regional/Countries
Category: person (5282 examples)
Description: List of people with online biographies
Source: www.biography-center.com
Category: cheese (599 examples)
Description: Global database of cheese information
Source: www.cheese.com
Category: disease (1362 examples)
Description: MeSH List of Diseases and Disorders
Source: www.mic.ki.se/Diseases/alphalist.html

	Abstract
	Keywords: named-entity classification, unknown words, probabilistic modeling, n-grams
	Introduction
	1Formalization of Problem
	1.1Task
	1.2Training
	1.3Testing
	1.4Evaluation

	2Model Used for Classification
	3Data Sets Used in Experiments
	4Experimental Results
	5Discussion
	5.1Analysis of Experimental Results
	5.2Contribution of Model Features
	5.3Impact of Other Model Parameters
	5.3.1Increasing N-Gram Length
	5.3.2Word Length Normalization
	5.3.3Training Data Size

	5.4Generation of Novel PNPs
	5.5Generalization to New Categories
	6Conclusion
	Acknowledgements
	References
	Appendix: Size and Source of Each Data Set

